

Your Total Water Solutions Provider

Considerations Before Moving Into Intensification Phase

Yaldah Azimi, Ph. D., P. Eng. (they/them) Senior Program Manager (Wastewater) Process Optimization and Technical Services Ontario Clean Water Agency

SOWC Intensification Workshop, Dec 2023

5 million+ Ontarians Place Their Trust In Us

- Largest water & wastewater operator in Canada.
- Manage around \$20 billion in municipal infrastructure.
- Each of the 11 Hubs in Ontario have their own regions and clusters of operators, managers, and process and compliance staff.
- 225 clients all over Ontario for Operation and Maintenance

Innovation Process Optimization and Technical Services (IPOTS)

- Experts in Process Innovation and Leading Edge Technologies
- Process Assessments and Value Engineering
- Piloting and Commissioning Support
- Conceptual-level Process Design
- Technical Design Review
- Process Expertise to Support Energy Program
- Troubleshooting, Process Risk Mitigation and Day-to-Day Operator Support
- Development of Standard Operating Procedures
- Support Compliance with Process
- Support Operations on MECP Inspection Reports
- Emergency Response
- Consultation with Regulatory Bodies

The Path to Intensification

Why Look at Optimization?

- Optimization-shopping is a better value
- Defer capital cost
- Provides a detailed look at how operational decisions are made
- An optimization study gives you a process roadmap
- Provides ideas on improving process control and instrumentation
- Your process issues may not be originating from where you think they are

Optimization Goals

- Process Optimization:
 - Increase Operating Capacity
 - Improve Compliance Metrics
 - Improve Energy Efficiency
 - Reduce GHG Emissions
 - Increase redundancy and operational flexibility
 - Improve Climate Resilience
 - Reduce Chemical Usage
 - Reduce Cost

- Operation and Maintenance Optimization:
 - Improving Staff Working Knowledge of the Treatment Process
 - Reinforcing Data-driven Decision
 Making
 - Increasing Efficiency in Completing Tasks
 - Effective Asset Tracking (Maintenance and Capital Planning)

Optimization Approach

Assess Process Capabilities Based on Equipment and Tankage

- Plant Data
- Design Guidelines
- Check with Operations
- Process Modelling

Determine which Ones are Capable or Not Capable

- Capable: Optimization
- Not Capable : Needs Capital

Decide on Altering Process Control, Operation and Monitoring Strategies that Could Lead to Improvements

- With Operations

Implement Optimization Strategy
 and Evaluate Performance

Remain Open to Altering the Strategy
 as you Learn More

Small and Medium Size Facilities have More Varied Challenges Compared to Larger Ones

- Compliance is often stricter
 - TN or NO₃-N requirements in the effluent
 - Lower TP requirements based on receiving waters (e.g., Lake Simcoe)
- Processes could be more varied Increased complexity
- Higher fluctuations in loads and flows
- Poor controls
- Higher fraction of industrial wastewater
- Varied access to resources (capital, labour, etc.)
- \$\$\$ Design not well thought through. They are often more challenging to troubleshoot and optimize.

Common Process Challenges at Wastewater Facilities

- Effluent compliance
- Poor biomass quality
- Under-designed or over-designed unit processes
- •No cross connections between unit processes
- Process capacity mismatches liquids vs. solids
- Biosolids storage
- Changes in influent characteristics

Key Process Interdependencies

- Poor grit removal –> quantity and quality of solids
- Primary treatment –> solids processing, secondary treatment loads
- Chemical TP removal –> Influence on TAN
- Secondary biomass quality —> Solids treatment, tertiary treatment
- WAS co-settling –> more operational unpredictability (solids)
- Digester supernatant -> secondary treatment

Potential Process Optimization Solutions

- Aeration optimization DO set points, control strategies (e.g., ABAC, MOV), diffusers, blowers, MABR.
- Step feed
- Improved process control (WAS, SRT control, total mass control, chemical set points) and monitoring
- Flow/load equalization
- Optimizing chemical usage theoretical values, mixing, injection points, monitoring program, equipment maintenance
- Sidestream management
- Biomass selection strategies cyclone, granulation
- Biofilm technologies Modular fixed film systems, IFAS, MBBR, MABR, Biocord, Ecofixe, etc.
- Baffles, variable height inlet systems (secondary clarifiers)

Example: Improving TAN Treatment

Example: Improving TN Compliance

Be Careful with Optimizing Yourself Out of Compliance!

- Chemical optimization (compliance limits and averaging periods)
- Impact/s of design and operational changes to effluent acute lethality often ignored (chemical reduction, aeration optimization, impacts on pH and effluent toxicity)
- Step feed ratios need close monitoring

Process Monitoring (Online or Not)

- How is the existing data used?
 - Collected for compliance (required)
 - Collected for process adjustment and optimization (additional cost, often needs buy-in)
- Online sensors
 - Integrated with SCADA for automated process control
 - Information for operations to make process adjustments and logged on SCADA (future design)
- The importance of operator engagement
- Are we getting better performance?

Other Factors for Consideration

- Operational burden vs. capital cost
- Lessons learned from design and operations mistakes
- The human factor (who am I designing for and how it will be used)
- Small footprint solution for a plant with lots of space
- Vendor warranties vs. designer liability

Main Takeaways

- Always start with optimization
- Be aware of all interdependencies (various processes, but also design, operation, administration, maintenance)
- Every plant is different
- Change is slow
- Increase monitoring as you optimize to a new condition
- Engage operations more on process control, optimization and monitoring
- Discuss a range of normal and not-normal operation modes (events) and evaluate OPMAN risks

Thank You!

Dr. Yaldah Azimi, MA Sc. Ph.D., P. Eng. Senior Program Manager - Process Optimization and Technical Services Ontario Clean Water Agency

> <u>Yazimi@ocwa.com</u> 905.301.9449 ♦ www.ocwa.com

